Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.444
Filtrar
1.
PeerJ ; 12: e17153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560470

RESUMO

Teleosauroid thalattosuchians were a clade of semi-aquatic crocodylomorphs that achieved a broad geographic distribution during the Mesozoic. While their fossils are well documented in Western European strata, our understanding of teleosauroids (and thalattosuchians in general) is notably poorer in Central-Eastern Europe, and from Poland in particular. Herein, we redescribe a teleosauroid rostrum (MZ VIII Vr-72) from middle Oxfordian strata of Zalecze Wielkie, in south-central Poland. Until now, the specimen has been largely encased in a block of limestone. After preparation, its rostral and dental morphology could be evaluated, showing the specimen to be a non-machimosaurin machimosaurid, similar in morphology to taxa Neosteneosaurus edwardsi and Proexochokefalos heberti. The well-preserved teeth enable us to study the specimen feeding ecology through the means of comparing its teeth to other teleosauroids through PCoA analysis. Comparisons with inferred closely related taxa suggest that the referred specimen was a macrophagous generalist. Notably, MZ VIII Vr-72 displays a prominent pathological distortion of the anterior rostrum, in the form of lateral bending. The pathology affects the nasal passage and tooth size and position, and is fully healed, indicating that, despite its macrophagous diet, it did not prevent the individual from food acquisition.


Assuntos
Evolução Biológica , Dente , Filogenia , Polônia , Dente/anatomia & histologia , Fósseis
2.
Sci Rep ; 14(1): 7788, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565571

RESUMO

Neanderthals occupied Western Eurasia between 350 ka and 40 ka ago, during the climatically volatile Pleistocene. A key issue is to what extent Neanderthal populations expanded into areas of Western Eurasia and what conditions facilitated such range expansions. The range extent of Neanderthals is generally based on the distribution of Neanderthal material, but the land-altering nature of glacial periods has erased much of the already sparse material evidence of Neanderthals, particularly in the northern latitudes. To overcome this obstacle species distribution models can estimate past distributions of Neanderthals, however, most implementations are generally constrained spatially and temporally and may be artificially truncating the Neanderthal niche space. Using dated contexts from Neanderthal sites from across Western Eurasia, millennial-scale paleoclimate reconstructions, and a spatiotemporal species distribution model, we infer the fundamental climatic niche space of Neanderthals and estimate the extent of Neanderthal occupation. We find that (a.) despite the long timeframe, Neanderthals occupy a relatively narrow fundamental climatic niche space, (b.) the estimated projected potential Neanderthal niche space suggests a larger geographic range than the material record suggests, and (c.) that there was a general decline in the size of the projected potential Neanderthal niche from 145 ka ago onward, possibly contributing to their extinction.


Assuntos
Homem de Neandertal , Animais , Fósseis
3.
PLoS One ; 19(4): e0298242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568908

RESUMO

Dinosauria debuted on Earth's stage in the aftermath of the Permo-Triassic Mass Extinction Event, and survived two other Triassic extinction intervals to eventually dominate terrestrial ecosystems. More than 231 million years ago, in the Upper Triassic Ischigualasto Formation of west-central Argentina, dinosaurs were just getting warmed up. At this time, dinosaurs represented a minor fraction of ecosystem diversity. Members of other tetrapod clades, including synapsids and pseudosuchians, shared convergently evolved features related to locomotion, feeding, respiration, and metabolism and could have risen to later dominance. However, it was Dinosauria that radiated in the later Mesozoic most significantly in terms of body size, diversity, and global distribution. Elevated growth rates are one of the adaptations that set later Mesozoic dinosaurs apart, particularly from their contemporary crocodilian and mammalian compatriots. When did the elevated growth rates of dinosaurs first evolve? How did the growth strategies of the earliest known dinosaurs compare with those of other tetrapods in their ecosystems? We studied femoral bone histology of an array of early dinosaurs alongside that of non-dinosaurian contemporaries from the Ischigualasto Formation in order to test whether the oldest known dinosaurs exhibited novel growth strategies. Our results indicate that the Ischigualasto vertebrate fauna collectively exhibits relatively high growth rates. Dinosaurs are among the fastest growing taxa in the sample, but they occupied this niche alongside crocodylomorphs, archosauriformes, and large-bodied pseudosuchians. Interestingly, these dinosaurs grew at least as quickly, but more continuously than sauropodomorph and theropod dinosaurs of the later Mesozoic. These data suggest that, while elevated growth rates were ancestral for Dinosauria and likely played a significant role in dinosaurs' ascent within Mesozoic ecosystems, they did not set them apart from their contemporaries.


Assuntos
Dinossauros , Animais , Dinossauros/anatomia & histologia , Evolução Biológica , Ecossistema , Fósseis , Osso e Ossos , Filogenia , Mamíferos
4.
J Comp Neurol ; 532(3): e25597, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38588163

RESUMO

Although the brain fills nearly the entire cranial cavity in birds, it can occupy a small portion of it in crocodilians. The lack of data regarding the volumetric correspondence between the brain and the cranial cavity hampers thorough assessments of the degree of encephalization in non-neornithean dinosaurs and other extinct archosaurs and, consequently, informed inferences regarding their cognitive capacities. Existing data suggest that, across extant archosaurs, the degree of endocranial doming and the volume of intracranial nonneural components are inversely related. We build upon this information to develop an equation relating these two anatomical features in non-neornithean dinosaurs and other extinct archosaurs. We rely on measurements of the endocast doming and brain-to-endocranial cavity (BEC) index in extant relatives of non-neornithean dinosaurs, namely, the crurotarsans Caiman crocodilus, Crocodylus niloticus, and Crocodylus porosus; the paleognaths Struthio camelus and Apteryx mantelli; and the fowl Macrocephalon maleo, Gallus gallus, Meleagris gallopavo, Phasianus colchicus, and Anas platyrhynchos. Applying the equation to representative endocasts from major clades of dinosaurs, we found that BEC varies from about 0.6 in ceratopsians and thyreophorans to around 0.7 in ornithopods, pachycephalosaurians, sauropods, and theropods. We, therefore, warn against the use of a catch-all value, like 0.5, and instead encourage refinement in the adoption of BEC across archosaurs.


Assuntos
Jacarés e Crocodilos , Dinossauros , Animais , Filogenia , Crânio/anatomia & histologia , Galinhas , Encéfalo , Evolução Biológica , Fósseis
5.
Sci Rep ; 14(1): 8347, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594297

RESUMO

Phosphatized fish fossils occur in various locations worldwide. Although these fossils have been intensively studied over the past decades they remain a matter of ongoing research. The mechanism of the permineralization reaction itself remains still debated in the community. The mineralization in apatite of a whole fish requires a substantial amount of phosphate which is scarce in seawater, so the origin of the excess is unknown. Previous research has shown that alkaline phosphatase, a ubiquitous enzyme, can increase the phosphate content in vitro in a medium to the degree of saturation concerning apatite. We applied this principle to an experimental setup where fish scales were exposed to commercial bovine alkaline phosphatase. We analyzed the samples with SEM and TEM and found that apatite crystals had formed on the remaining soft tissue. A comparison of these newly formed apatite crystals with fish fossils from the Solnhofen and Santana fossil deposits showed striking similarities. Both are made up of almost identically sized and shaped nano-apatites. This suggests a common formation process: the spontaneous precipitation from an oversaturated solution. The excess activity of alkaline phosphatase could explain that effect. Therefore, our findings could provide insight into the formation of well-preserved fossils.


Assuntos
Fosfatase Alcalina , Apatitas , Animais , Bovinos , Apatitas/química , Fosfatos/metabolismo , Fósseis
6.
PLoS One ; 19(4): e0297233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593119

RESUMO

Chitinozoans recovered from one section of the Middle Devonian Los Monos Formation in the TCB X-1001-Tacobo borehole, sub-Andean basin of Bolivia, have been analysed. Eleven from the eighteen processed cutting samples yielded specimens that allowed taxonomic study. Eleven genera and thirty-five chitinozoan species were identified from the Los Monos Formation with four of them recorded for the first time in Western Gondwana. Ancyrochitina biconstricta, Ancyrochitina parisi, Angochitina galarzae and Ramochitina boliviensis are among the most relevant taxa restricted to Western Gondwana that support the affinity with this paleocontinent. One new species, Lagenochitina tacobensis sp. nov. is described, and Ramochitina candelariaensis sp. nov. (n. n.) is formally erected. The chitinozoan assemblage reinforces the late Eifelian-middle Givetian age previously proposed by organic-walled phytoplankton and miospores for this section of the TCB X-1001-Tacobo borehole. A new local chitinozoan biozonation based on the chitinozoan assemblages is proposed and a revision of the current chitinozoan biozonation for Western Gondwana and Bolivia is recommended.


Assuntos
Fósseis , Bolívia , Animais
7.
J Hum Evol ; 190: 103494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564844

RESUMO

The body proportions of extant animals help inform inferences about the behaviors of their extinct relatives, but relationships between body proportions, behavior, and phylogeny in extant primates remain unclear. Advances in behavioral data, molecular phylogenies, and multivariate analytical tools make it an opportune time to perform comprehensive comparative analyses of primate traditional limb length proportions (e.g., intermembral, humerofemoral, brachial, and crural indices), body size-adjusted long bone proportions, and principal components. In this study we used a mix of newly-collected and published data to investigate whether and how the limb length proportions of a diverse sample of primates, including monkeys, apes, and modern humans, are influenced by behavior and phylogeny. We reconfirm that the intermembral index, followed by the first principal component of traditional limb length proportions, is the single most effective variable distinguishing hominoids and other anthropoids. Combined limb length proportions and positional behaviors are strongly correlated in extant anthropoid groups, but phylogeny is a better predictor of limb length proportion variation than of behavior. We confirm convergences between members of the Atelidae and extant apes (especially Pan), members of the Hylobatidae and Pongo, and a potential divergence of Presbytis limb proportions from some other cercopithecoids, which correlate with adaptations for forelimb-dominated behaviors in some colobines. Collectively, these results substantiate hypotheses indicating that extinct hominins and other hominoid taxa can be distinguished by analyzing combinations of their limb length proportions at different taxonomic levels. From these results, we hypothesize that fossil skeletons characterized by notably disparate limb length proportions are unlikely to have exhibited similar behavioral patterns.


Assuntos
Hominidae , Hylobatidae , Humanos , Animais , Filogenia , Haplorrinos , Fósseis , Primatas , Extremidade Superior , Evolução Biológica
8.
J Hum Evol ; 190: 103498, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581918

RESUMO

The Homa Peninsula, in southwestern Kenya, continues to yield insights into Oldowan hominin landscape behaviors. The Late Pliocene locality of Nyayanga (∼3-2.6 Ma) preserves some of the oldest Oldowan tools. At the Early Pleistocene locality of Kanjera South (∼2 Ma) toolmakers procured a diversity of raw materials from over 10 km away and strategically reduced them in a grassland-dominated ecosystem. Here, we report findings from Sare-Abururu, a younger (∼1.7 Ma) Oldowan locality approximately 12 km southeast of Kanjera South and 18 km east of Nyayanga. Sare-Abururu has yielded 1754 artifacts in relatively undisturbed low-energy silts and sands. Stable isotopic analysis of pedogenic carbonates suggests that hominin activities were carried out in a grassland-dominated setting with similar vegetation structure as documented at Kanjera South. The composition of a nearby paleo-conglomerate indicates that high-quality stone raw materials were locally abundant. Toolmakers at Sare-Abururu produced angular fragments from quartz pebbles, representing a considerable contrast to the strategies used to reduce high quality raw materials at Kanjera South. Although lithic reduction at Sare-Abururu was technologically simple, toolmakers proficiently produced cutting edges, made few mistakes and exhibited a mastery of platform management, demonstrating that expedient technical strategies do not necessarily indicate a lack of skill or suitable raw materials. Lithic procurement and reduction patterns on the Homa Peninsula appear to reflect variation in local resource contexts rather than large-scale evolutionary changes in mobility, energy budget, or toolmaker cognition.


Assuntos
Hominidae , Animais , Quênia , Ecossistema , Evolução Biológica , Carbonatos , Arqueologia , Fósseis
9.
J Hum Evol ; 190: 103508, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599140

RESUMO

The Mount Galili Formation in the Afar region, Ethiopia, samples a critical time in hominin evolution, 4.4 to 3.8 Ma, documenting the last appearance of Ardipithecus and the origin of Australopithecus. This period is also important in the evolution of cercopithecids, especially the origin of Theropithecus in general and Theropithecus oswaldi lineage in particular. Galili has provided a total of 655 cercopithecid specimens that include crania, mandibles, isolated teeth and postcrania. All the fossils were recovered from the Lasdanan (5.3-4.43 Ma), Dhidinley (4.43-3.9 Ma) and Shabeley Laag (∼3.92-3.8 Ma) Members. Here, we described and analyzed 362 fossils employing both qualitative and quantitative methods. Descriptions of the material were supplemented with dental metrics and cranial shape analysis using three-dimensional geometric morphometrics. Results indicate the presence of at least six cercopithecid taxa: Theropithecus oswaldi serengetensis (n = 28), Theropithecus sp. (n = 2), three non-Theropithecus papionin groups (n = 134) and one colobine-size group (n = 58). The T. o. serengetensis represents the earliest form of the lineage, documented from ∼3.9 Ma Galili sediments. The three Galili papionins include a smaller taxon, a medium-sized taxon comparable to Pliopapio alemui and a large papionin overlapping in size with Soromandrillus, Gorgopithecus and Dinopithecus. The majority of Galili colobines have closest affinities to Kuseracolobus aramisi and some overlap with other taxa. Papionins dominate the Galili cercopithecid collection, although colobines are still fairly common (approximately 25% of the sample). Thus, Galili sample is like Kanapoi (4.2-4.1 Ma) and Gona (5.2-3.9 Ma) localities but distinct from Aramis, suggesting paleoecological similarity to the former sites. On the other hand, Theropithecus is less abundant at Galili than geologically younger Hadar (3.4-3.2 Ma) and Woranso-Mille (3.8-3.6 Ma) sites. Whether this difference is due to sampling, time or landscape variation requires further investigation.


Assuntos
Hominidae , Theropithecus , Animais , Cercopithecidae , Fósseis , Etiópia , Crânio/anatomia & histologia
10.
Nat Commun ; 15(1): 2822, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561329

RESUMO

The systematic status of the small-bodied catarrhine primate Pliobates cataloniae, from the Miocene (11.6 Ma) of Spain, is controversial because it displays a mosaic of primitive and derived features compared with extant hominoids (apes and humans). Cladistic analyses have recovered Pliobates as either a stem hominoid or as a pliopithecoid stem catarrhine (i.e., preceding the cercopithecoid-hominoid divergence). Here, we describe additional dental remains of P. cataloniae from another locality that display unambiguous synapomorphies of crouzeliid pliopithecoids. Our cladistic analyses support a close phylogenetic link with poorly-known small crouzeliids from Europe based on (cranio)dental characters but recover pliopithecoids as stem hominoids when postcranial characters are included. We conclude that Pliobates is a derived stem catarrhine that shows postcranial convergences with modern apes in the elbow and wrist joints-thus clarifying pliopithecoid evolution and illustrating the plausibility of independent acquisition of postcranial similarities between hylobatids and hominids.


Assuntos
Fósseis , Hominidae , Animais , Humanos , Filogenia , Primatas , Cercopithecidae , Evolução Biológica
11.
Proc Biol Sci ; 291(2020): 20232546, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565153

RESUMO

Fossilized mating insects are irreplaceable material for comprehending the evolution of the mating behaviours and life-history traits in the deep-time record of insects as well as the potential sexual conflict. However, cases of mating pairs are particularly rare in fossil insects, especially aquatic or semi-aquatic species. Here, we report the first fossil record of a group of water striders in copulation (including three pairs and a single adult male) based on fossils from the mid-Cretaceous of northern Myanmar. The new taxon, Burmogerris gen. nov., likely represents one of the oldest cases of insects related to the marine environment, such as billabongs formed by the tides. It exhibits conspicuous dimorphism associated with sexual conflict: the male is equipped with a specialized protibial comb as a grasping apparatus, likely representing an adaptation to overcome female resistance during struggles. The paired Burmogerris show smaller males riding on the backs of the females, seemingly recording a scene of copulatory struggles between the sexes. Our discovery reveals a mating system dominated by males and sheds light on the potential sexual conflicts of Burmogerris in the Cretaceous. It indicates the mating behaviour remained stable over long-term geological time in these water-walking insects.


Assuntos
Âmbar , Traços de História de Vida , Animais , Feminino , Masculino , Insetos , Reprodução , Copulação , Fósseis , Mianmar
12.
Microb Biotechnol ; 17(4): e14458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568795

RESUMO

Bioplastics, comprised of bio-based and/or biodegradable polymers, have the potential to play a crucial role in the transition towards a sustainable circular economy. The use of biodegradable polymers not only leads to reduced greenhouse gas emissions but also might address the problem of plastic waste persisting in the environment, especially when removal is challenging. Nevertheless, biodegradable plastics should not be considered as substitutes for proper waste management practices, given that their biodegradability strongly depends on environmental conditions. Among the challenges hindering the sustainable implementation of bioplastics in the market, the development of effective downstream recycling routes is imperative, given the increasing production volumes of these materials. Here, we discuss about the most advisable end-of-life scenarios for bioplastics. Various recycling strategies, including mechanical, chemical or biological (both enzymatic and microbial) approaches, should be considered. Employing enzymes as biocatalysts emerges as a more selective and environmentally friendly alternative to chemical recycling, allowing the production of new bioplastics and added value and high-quality products. Other pending concerns for industrial implementation of bioplastics include misinformation among end users, the lack of a standardised bioplastic labelling, unclear life cycle assessment guidelines and the need for higher financial investments. Although further research and development efforts are essential to foster the sustainable and widespread application of bioplastics, significant strides have already been made in this direction.


Assuntos
Plásticos Biodegradáveis , Gerenciamento de Resíduos , Plásticos , Fósseis , Biopolímeros , Polímeros
13.
Sci Data ; 11(1): 361, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600091

RESUMO

Species assemblage composition of marine microfossils offers the possibility to investigate ecological and climatological change on time scales inaccessible using conventional observations. Planktonic foraminifera - calcareous zooplankton - have an excellent fossil record and are used extensively in palaeoecology and palaeoceanography. During the Last Glacial Maximum (LGM; 19,000 - 23,000 years ago), the climate was in a radically different state. This period is therefore a key target to investigate climate and biodiversity under different conditions than today. Studying LGM climate and ecosystems indeed has a long history, yet the most recent global synthesis of planktonic foraminifera assemblage composition is now nearly two decades old. Here we present the ForCenS-LGM dataset with 2,365 species assemblage samples collected using standardised methods and with harmonised taxonomy. The data originate from marine sediments from 664 sites and present a more than 50% increase in coverage compared to previous work. The taxonomy is compatible with the most recent global core top dataset, enabling direct investigation of temporal changes in foraminifera biogeography and facilitating seawater temperature reconstructions.


Assuntos
Foraminíferos , Fósseis , Zooplâncton , Animais , Biodiversidade , Ecossistema
14.
Commun Biol ; 7(1): 436, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600295

RESUMO

Oviraptorosaurians were a theropod dinosaur group that reached high diversity in the Late Cretaceous. Within oviraptorosaurians, the later diverging oviraptorids evolved distinctive crania which were extensively pneumatised, short and tall, and had a robust toothless beak, interpreted as providing a powerful bite for their herbivorous to omnivorous diet. The present study explores the ability of oviraptorid crania to resist large mechanical stresses compared with other theropods and where this adaptation originated within oviraptorosaurians. Digital 3D cranial models were constructed for the earliest diverging oviraptorosaurian, Incisivosaurus gauthieri, and three oviraptorids, Citipati osmolskae, Conchoraptor gracilis, and Khaan mckennai. Finite element analyses indicate oviraptorosaurian crania were stronger than those of other herbivorous theropods (Erlikosaurus and Ornithomimus) and were more comparable to the large, carnivorous Allosaurus. The cranial biomechanics of Incisivosaurus align with oviraptorids, indicating an early establishment of distinctive strengthened cranial biomechanics in Oviraptorosauria, even before the highly modified oviraptorid cranial morphology. Bite modelling, using estimated muscle forces, suggests oviraptorid crania may have functioned closer to structural safety limits. Low mechanical stresses around the beaks of oviraptorids suggest a convergently evolved, functionally distinct rhamphotheca, serving as a cropping/feeding tool rather than for stress reduction, when compared with other herbivorous theropods.


Assuntos
Dinossauros , Fósseis , Animais , Crânio/anatomia & histologia , Dinossauros/anatomia & histologia , Herbivoria , Dieta
15.
BMC Biol ; 22(1): 79, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600528

RESUMO

BACKGROUND: Throughout its nearly four-billion-year history, life has undergone evolutionary transitions in which simpler subunits have become integrated to form a more complex whole. Many of these transitions opened the door to innovations that resulted in increased biodiversity and/or organismal efficiency. The evolution of multicellularity from unicellular forms represents one such transition, one that paved the way for cellular differentiation, including differentiation of male and female gametes. A useful model for studying the evolution of multicellularity and cellular differentiation is the volvocine algae, a clade of freshwater green algae whose members range from unicellular to colonial, from undifferentiated to completely differentiated, and whose gamete types can be isogamous, anisogamous, or oogamous. To better understand how multicellularity, differentiation, and gametes evolved in this group, we used comparative genomics and fossil data to establish a geologically calibrated roadmap of when these innovations occurred. RESULTS: Our ancestral-state reconstructions, show that multicellularity arose independently twice in the volvocine algae. Our chronograms indicate multicellularity evolved during the Carboniferous-Triassic periods in Goniaceae + Volvocaceae, and possibly as early as the Cretaceous in Tetrabaenaceae. Using divergence time estimates we inferred when, and in what order, specific developmental changes occurred that led to differentiated multicellularity and oogamy. We find that in the volvocine algae the temporal sequence of developmental changes leading to differentiated multicellularity is much as proposed by David Kirk, and that multicellularity is correlated with the acquisition of anisogamy and oogamy. Lastly, morphological, molecular, and divergence time data suggest the possibility of cryptic species in Tetrabaenaceae. CONCLUSIONS: Large molecular datasets and robust phylogenetic methods are bringing the evolutionary history of the volvocine algae more sharply into focus. Mounting evidence suggests that extant species in this group are the result of two independent origins of multicellularity and multiple independent origins of cell differentiation. Also, the origin of the Tetrabaenaceae-Goniaceae-Volvocaceae clade may be much older than previously thought. Finally, the possibility of cryptic species in the Tetrabaenaceae provides an exciting opportunity to study the recent divergence of lineages adapted to live in very different thermal environments.


Assuntos
Clorofíceas , Volvox , Filogenia , Evolução Biológica , Volvox/genética , Fósseis , Plantas , Diferenciação Celular
16.
BMC Plant Biol ; 24(1): 277, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605351

RESUMO

BACKGROUND: The "woody clade" in Saxifragales (WCS), encompassing four woody families (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae), is a phylogenetically recalcitrant node in the angiosperm tree of life, as the interfamilial relationships of the WCS remain contentious. Based on a comprehensive sampling of WCS genera, this study aims to recover a robust maternal backbone phylogeny of the WCS by analyzing plastid genome (plastome) sequence data using Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) methods, and to explore the possible causes of the phylogenetic recalcitrance with respect to deep relationships within the WCS, in combination with molecular and fossil evidence. RESULTS: Although the four WCS families were identically resolved as monophyletic, the MP analysis recovered different tree topologies for the relationships among Altingiaceae, Cercidiphyllaceae, and Daphniphyllaceae from the ML and BI phylogenies. The fossil-calibrated plastome phylogeny showed that the WCS underwent a rapid divergence of crown groups in the early Cretaceous (between 104.79 and 100.23 Ma), leading to the origin of the stem lineage ancestors of Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae within a very short time span (∼4.56 Ma). Compared with the tree topology recovered in a previous study based on nuclear genome data, cytonuclear discordance regarding the interfamilial relationships of the WCS was detected. CONCLUSIONS: Molecular and fossil evidence imply that the early divergence of the WCS might have experienced radiative diversification of crown groups, extensive extinctions at the genus and species levels around the Cretaceous/Paleocene boundary, and ancient hybridization. Such evolutionarily complex events may introduce biases in topological estimations within the WCS due to incomplete lineage sorting, cytonuclear discordance, and long-branch attraction, potentially impacting the accurate reconstruction of deep relationships.


Assuntos
Genomas de Plastídeos , Saxifragales , Humanos , Filogenia , Saxifragales/genética , Fósseis , Teorema de Bayes , Plastídeos/genética
17.
BMC Ecol Evol ; 24(1): 46, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627692

RESUMO

BACKGROUND: Tooth replacement patterns of early-diverging ornithischians, which are important for understanding the evolution of the highly specialized dental systems in hadrosaurid and ceratopsid dinosaurs, are poorly known. The early-diverging neornithischian Jeholosaurus, a small, bipedal herbivorous dinosaur from the Early Cretaceous Jehol Biota, is an important taxon for understanding ornithischian dental evolution, but its dental morphology was only briefly described previously and its tooth replacement is poorly known. RESULTS: CT scanning of six specimens representing different ontogenetic stages of Jeholosaurus reveals significant new information regarding the dental system of Jeholosaurus, including one or two replacement teeth in nearly all alveoli, relatively complete tooth resorption, and an increase in the numbers of alveoli and replacement teeth during ontogeny. Reconstructions of Zahnreihen indicate that the replacement pattern of the maxillary dentition is similar to that of the dentary dentition but with a cyclical difference. The maxillary tooth replacement rate in Jeholosaurus is probably 46 days, which is faster than that of most other early-diverging ornithischians. During the ontogeny of Jeholosaurus, the premaxillary tooth replacement rate slows from 25 days to 33 days with similar daily dentine formation. CONCLUSIONS: The tooth replacement rate exhibits a decreasing trend with ontogeny, as in Alligator. In a phylogenetic context, fast tooth replacement and multi-generation replacement teeth have evolved at least twice independently in Ornithopoda, and our analyses suggest that the early-diverging members of the major ornithischian clades exhibit different tooth replacement patterns as an adaption to herbivory.


Assuntos
Dinossauros , Dente , Animais , Filogenia , Dinossauros/anatomia & histologia , Herbivoria , Fósseis , Dente/diagnóstico por imagem , Dente/cirurgia , Dente/anatomia & histologia
18.
Proc Biol Sci ; 291(2021): 20240337, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628124

RESUMO

Darwin attributed the absence of species transitions in the fossil record to his hypothesis that speciation occurs within isolated habitat patches too geographically restricted to be captured by fossil sequences. Mayr's peripatric speciation model added that such speciation would be rapid, further explaining missing evidence of diversification. Indeed, Eldredge and Gould's original punctuated equilibrium model combined Darwin's conjecture, Mayr's model and 124 years of unsuccessfully sampling the fossil record for transitions. Observing such divergence, however, could illustrate the tempo and mode of evolution during early speciation. Here, we investigate peripatric divergence in a Miocene stickleback fish, Gasterosteus doryssus. This lineage appeared and, over approximately 8000 generations, evolved significant reduction of 12 of 16 traits related to armour, swimming and diet, relative to its ancestral population. This was greater morphological divergence than we observed between reproductively isolated, benthic-limnetic ecotypes of extant Gasterosteus aculeatus. Therefore, we infer that reproductive isolation was evolving. However, local extinction of G. doryssus lineages shows how young, isolated, speciating populations often disappear, supporting Darwin's explanation for missing evidence and revealing a mechanism behind morphological stasis. Extinction may also account for limited sustained divergence within the stickleback species complex and help reconcile speciation rate variation observed across time scales.


Assuntos
Isolamento Reprodutivo , Smegmamorpha , Animais , Fósseis , Ecossistema , Smegmamorpha/anatomia & histologia , Fenótipo
19.
Nature ; 628(8008): 576-581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570677

RESUMO

The dual jaw joint of Morganucodon1,2 consists of the dentary-squamosal joint laterally and the articular-quadrate one medially. The articular-quadrate joint and its associated post-dentary bones constitute the precursor of the mammalian middle ear. Fossils documenting the transition from such a precursor to the mammalian middle ear are poor, resulting in inconsistent interpretations of this hallmark apparatus in the earliest stage of mammaliaform evolution1-5. Here we report mandibular middle ears from two Jurassic mammaliaforms: a new morganucodontan-like species and a pseudotribosphenic shuotheriid species6. The morganucodontan-like species shows many previously unknown post-dentary bone morphologies1,2 and exhibits features that suggest a loss of load-bearing function in its articular-quadrate joint. The middle ear of the shuotheriid approaches the mammalian condition in that it has features that are suitable for an exclusively auditory function, although the post-dentary bones are still attached to the dentary. With size reduction of the jaw-joint bones, the quadrate shifts medially at different degrees in relation to the articular in the two mammaliaforms. These changes provide evidence of a gradual loss of load-bearing function in the articular-quadrate jaw joint-a prerequisite for the detachment of the post-dentary bones from the dentary7-12 and the eventual breakdown of the Meckel's cartilage13-15 during the evolution of mammaliaforms.


Assuntos
Evolução Biológica , Orelha Média , Fósseis , Arcada Osseodentária , Mamíferos , Articulação Temporomandibular , Animais , Orelha Média/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Mandíbula/anatomia & histologia , Articulação Temporomandibular/anatomia & histologia
20.
Nature ; 628(8008): 569-575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570681

RESUMO

Shuotheriids are Jurassic mammaliaforms that possess pseudotribosphenic teeth in which a pseudotalonid is anterior to the trigonid in the lower molar, contrasting with the tribosphenic pattern of therian mammals (placentals, marsupials and kin) in which the talonid is posterior to the trigonid1-4. The origin of the pseudotribosphenic teeth remains unclear, obscuring our perception of shuotheriid affinities and the early evolution of mammaliaforms1,5-9. Here we report a new Jurassic shuotheriid represented by two skeletal specimens. Their complete pseudotribosphenic dentitions allow reidentification of dental structures using serial homology and the tooth occlusal relationship. Contrary to the conventional view1,2,6,10,11, our findings show that dental structures of shuotheriids can be homologized to those of docodontans and partly support homologous statements for some dental structures between docodontans and other mammaliaforms6,12. The phylogenetic analysis based on new evidence removes shuotheriids from the tribosphenic ausktribosphenids (including monotremes) and clusters them with docodontans to form a new clade, Docodontiformes, that is characterized by pseudotribosphenic features. In the phylogeny, docodontiforms and 'holotherians' (Kuehneotherium, monotremes and therians)13 evolve independently from a Morganucodon-like ancestor with triconodont molars by labio-lingual widening their posterior teeth for more efficient food processing. The pseudotribosphenic pattern passed a cusp semitriangulation stage9, whereas the tribosphenic pattern and its precursor went through a stage of cusp triangulation. The two different processes resulted in complex tooth structures and occlusal patterns that elucidate the earliest diversification of mammaliaforms.


Assuntos
Evolução Biológica , Fósseis , Mamíferos , Dente , Animais , Eutérios/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Mamíferos/fisiologia , Marsupiais/anatomia & histologia , Dente Molar/anatomia & histologia , Dente Molar/fisiologia , Filogenia , Dente/anatomia & histologia , Dente/fisiologia , Mastigação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...